
Bilkent University

CS 353: DATABASE SYSTEMS

Group 3: Online Course Platform

Project Design Report

Group Members:

Işık Özsoy 21703160 Section: 2

Defne Betül Çiftci 21802635 Section: 3

Şebnem Uslu 21802068 Section: 2

Melike Fatma Aydoğan 21704043 Section: 2

Instructors: Özgür Ulusoy, Uğur Güdükbay
Teaching Assistant: Mustafa Can Çavdar

Design Report

April 2, 2021

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of the requirements
of the Database Systems course CS353.

Table of Contents
Revised E/R Model 3

Revised E/R Diagram 3
Changes Made In E/R Diagram 3

Relation Schemas 4
User 4
Student 4
Instructor 5
SiteAdmin 5
Advertiser 5
Course 6
Gift 6
Complaint 7
Takes-note 7
Wishes 7
Finishes 8
Rate 8
Enroll 9
Announcement 9
Contributor 10
Lecture 10
Progress 10
Teaches 11
Topic 11
Course-topic 11
Interested-in 12
Discount 12
Post 13
Quest-answ 13
Advertisement 13
RefundRequest 14
Evaluates 14
Assignment 15
LectureMaterial 15
Inside-cart 16

Interface Designs and Corresponding SQL Statements 16
Main Page Before Login (Scroll Down) 17

SQL Statement: 18
Student Signup Page 18

SQL Statement: 18
Instructor Signup 19

SQL Statement: 19
Advertiser Signup 19

1

SQL Statement: 19
Login Page for Advertiser 20

SQL Statement: 20
Login Page for Other User Types 20

SQL Statement: 20
Main Page of Student After Login (Scroll Down) 21

SQL Statement: 21
SQL Statement: 22
SQL Statement: 22

Main Page of Instructor After Login 23
SQL Statement: 23

Course Info Page 24
SQL Statement: 24

Shopping Cart Page and with Gift Property Page 25
SQL Statement: 25

Notifications 26
SQL Statement: 27

Student’s Courses Page 27
SQL Statement: 27

Wishlist Page 28
SQL Statement: 28

Watching Lecture Page 29
SQL Statement: 29

Course Overview Page 29
SQL Statement: 30

Completing a Course Page 30
SQL Statement: 30

Course Refund Request 31
SQL Statement: 31

Course Ask Question 32
SQL Statement: 32

Note Page 33
SQL Statement: 33

Course Page for Advertisers - Additional Functionality 33
Advertise Page for Advertisers - Additional Functionality 34

SQL Statement: 34
Notification Page for Instructors that Shows the Advertisement Offer - Additional Functionality 35

SQL Statement: 35
Advertisement Requests for Advertisers - Additional Functionality 36

SQL Statement: 36
Extra Pages Made for Instructor Which Are Unnecessary for Design Report 36
Add Lecture Material Page 38

Systems and Technologies 39

2

I. Revised E/R Model

Revised E/R Diagram

Changes Made In E/R Diagram
● Primary key for RefundRequest (refund-id) was added.
● Participation of RefundRequest in the Request-refund relation became total.
● Advertiser is now not a User, but a separate entity with mostly same attributes except for

company-name and ad-username.
● Lecture became a normal entity instead of a weak entity.
● Evaluates relation was added with attribute reply-date which shows the date that Admin

evaluates the request. This relation demonstrates which request is evaluated by who and
when.

● Complain relation was transformed from a three-way relation into two different binary relations
named “Complain” that connects Complaint and Student and “Have-Complain” that connects
Course and Complaint.

3

● Offer-ad relation was transformed from a three-way relation into two different binary relations
named “Offer-ad” that connects Advertisement and Advertiser and “Advertised” that connects
Advertisement and Course.

● Request-refund relation was transformed from a three-way relation into two different binary
relations named “Request-refund” that connects Student and RefundRequest and
“Refund-requested” that connects Course and RefundRequest.

● Takes-note is now not connected to Course but connected to Lecture.
● A many-to-many “In-cart” relation is added between Student and Course that has an attribute

named “receiver-email”.
● Participation of Announcement to Course and Instructor became total.

II. Relation Schemas

User
Relational Model: User (username, name, password, email, phone)
Candidate Key:

username
email

Primary Key: username
Table Definition:
create table User (

username char (50),
name char (50),
password char(50),
email char (50),
phone char (50),
primary key (username)

)
engine=InnoDB;

Student
Relational Model: Student (username)
Candidate Key:

username
Primary Key: username
Foreign Key:

username referencing User
Table Definition:
create table Student (

username char (50),
primary key (username),
foreign key (username) references User

)
engine=InnoDB;

4

Instructor
Relational Model: Instructor (username, description)
Candidate Key:

username
Primary Key: username
Foreign Key:

username referencing User
Table Definition:
create table Instructor (

username char(50),
description char(1000),
primary key (username),
foreign key (username) references User

)
engine=InnoDB;

SiteAdmin
Relational Model: SiteAdmin (username, ssn, address)
Candidate Key:

username
ssn

Primary Key: username
Foreign Key:

username referencing User
Table Definition:
create table SiteAdmin (

username char (50),
ssn char (20),
address char (100),
primary key (username),
foreign key (username) references User

)
engine=InnoDB;

Advertiser
Relational Model: Advertiser (ad-username, name, password, email, phone, company-name)
Candidate Key:

ad-username
email

Primary Key: username
Table Definition:
create table Advertiser (

ad-username char (50),
name char (50),
password char (50),
email char (50),

5

phone char (50),
company-name char (100),
primary key (ad-username)

)
engine=InnoDB;

Course
Relational Model: Course (cno, owner-username, cname, price, situation, is-private, course-img,
description)
Candidate Key:

cno
Primary Key: cno
Foreign Key:

owner-username referencing Instructor (username)
Table Definition:
create table Course (

cno int,
owner-username char (50),
cname char (50),
price numeric (6,2),
situation smallint,
is-private smallint,
course-img varchar(512),
description varchar (1000),
primary key (cno),
foreign key (owner-username) references Instructor (username)

)
engine=InnoDB;

Gift
Relational Model: Gift (sender-username, receiver-username, cno)
Candidate Key:

sender-username, receiver-username, cno
Primary Key: sender-username, receiver-username, cno
Foreign Key:

sender-username referencing User (username)
receiver-username referencing Student (username)
cno referencing Course

Table Definition:
create table Gift (

sender-username int,
receiver-username int,
cno int,
primary key (sender-username, receiver-username, cno),
foreign key (sender-username) references User (username),
foreign key (receiver-username) references Student (username),

6

foreign key (cno) references Course
)
engine=InnoDB;

Complaint
Relational Model: Complaint (comp-id, s-username, cno, creation-date, description)
Candidate Key:

comp-id
Primary Key: comp-id
Foreign Key:

s-username referencing Student (username)
cno referencing Course

Table Definition:
create table Complaint-made (

comp-id int,
s-username char(50),
cno int,
creation-date date,
description char(1000),
primary key (comp-id),
foreign key (s-username) references Student (username),
foreign key (cno) references Course

)
engine=InnoDB;

Takes-note
Relational Model: Takes-note (s-username, lecture-no, note)
Candidate Key:

s-username, lecture-no
Primary Key: s-username, lecture-no
Foreign Key:

s-username referencing Student (username)
cno referencing Course

Table Definition:
create table Takes-Note (

s-username char (50),
lecture-no int,
note varchar (4000),
primary key (s-username, lecture-no),
foreign key (s-username) references Student (username)

)
engine=InnoDB;

Wishes
Relational Model: Wishes (s-username, cno)
Candidate Key:

7

s-username, cno
Primary Key: s-username, cno
Foreign Key:

s-username referencing Student (username)
cno referencing Course

Table Definition:
create table Wishes (

s-username char(50),
cno int,
primary key (s-username, cno),
foreign key (s-username) references Student (username),
foreign key (cno) references Course

)
engine=InnoDB;

Finishes
Relational Model: Finishes (s-username, cno, comment)
Candidate Key:

s-username, cno
Primary Key: s-username, cno
Foreign Key:

s-username referencing Student (username)
cno referencing Course

Table Definition:
create table Finishes (

s-username char(50),
cno int,
comment varchar (150),
primary key (s-username, cno),
foreign key (s-username) references Student (username),
foreign key (cno) references Course

)
engine=InnoDB;

Rate
Relational Model: Rate (s-username, cno, score)
Candidate Key:

s-username, cno
Primary Key: s-username, cno
Foreign Key:

s-username referencing Student (username)
cno referencing Course

Table Definition:
create table Rate (

s-username char (50),
cno int,

8

score int,
primary key (s-username, cno),
foreign key (s-username) references Student (username),
foreign key (cno) references Course

)
engine=InnoDB;

Enroll
Relational Model: Enroll (s-username, cno)
Candidate Key:

s-username, cno
Primary Key: s-username, cno
Foreign Key:

s-username referencing Student (username)
cno referencing Course

Table Definition:
create table Enroll (

s-username char (50),
cno int,
primary key (s-username, cno),
foreign key (s-username) references Student (username),
foreign key (cno) references Course

)
engine=InnoDB;

Announcement
Relational Model: Announce (ann-id, cno, i-username, ann-tex, ann-date)
Candidate Key:

ann-id
Primary Key: ann-id
Foreign Key:

cno referencing Course
username referencing Instructor

Table Definition: create table Announcement (
ann-id char(20),
s-username char(50),
cno int,
ann-text varchar(1000),
ann-date date,
primary key (ann-id),
foreign key (i-username) references Instructor (username),
foreign key (cno) references Course

)
engine=InnoDB;

9

Contributor
Relational Model: Contributor (cno, i-username)
Candidate Key:

cno, i-username
Primary Key: cno, i-username
Foreign Key:

cno referencing Course
i-username referencing Instructor (username)

Table Definition:
create Contributor (

cno int,
i-username char(50),
primary key (cno, i-username),
foreign key (cno) references Course,
foreign key (i-username) references Instructor (username)

)
engine=InnoDB;

Lecture
Relational Model: Lecture (lecture-no, lecture-name, video, cno)
Candidate Key:

lecture-no
Primary Key: lecture-no
Foreign Key:

cno referencing Course
Table Definition:
create table Lecture (

lecture-no int,
lecture-name char (200),
video char (100),
cno int,
primary key (lecture-no),
foreign key (cno) references Course (cno)

)
engine=InnoDB;

Progress
Relational Model: Progress (s-username, lecture-no)
Candidate Key:

s-username, lecture-no
Primary Key: s-username, lecture-no
Foreign Key:

s-username referencing Student (username)
lecture-no referencing Lecture

Table Definition:
create table Progress (

10

s-username char(50),
lecture-no int,
primary key (s-username, lecture-no),
foreign key (s-username) references Student (username),
foreign key (lecture-no) references Lecture (lecture-no)

)
engine=InnoDB;

Teaches
Relational Model: Teaches (i-username, lecture-no)
Candidate Key:

i-username, lecture-no
Primary Key: i-username, lecture-no
Foreign Key:

lecture-no referencing Lecture
i-username referencing Instructor (username)

Table Definition:
create table Teaches (

i-username char(50),
lecture-no int,
primary key (i-username, lecture-no),
foreign key (i-username) references Instructor (username),
foreign key (lecture-no) references Lecture (lecture-no)

)
engine=InnoDB;

Topic
Relational Model: Topic (topicname)
Candidate Key:

topicname
Primary Key: topicname
Table Definition:
create table Topic(

topicname char(100),
primary key (topicname)

)
engine=InnoDB;

Course-topic
Relational Model: Course-topic (cno, topicname)
Candidate Key:

cno, topicname
Primary Key: cno, topicname
Foreign Key:

cno referencing Course
topicname referencing Topic

11

Table Definition:
create table Course-topic(

cno int,
topicname char(100),
primary key(cno, topicname),
foreign key (cno) references Course (cno),
foreign key (topicname) references Topic (topicname)

)
engine=InnoDB;

Interested-in
Relational Model: Interested-in (s-username, topicname)
Candidate Key:

s-username, topicname
Primary Key: s-username, topicname
Foreign Key:

s-username referencing Student (username)
topicname referencing Topic

Table Definition:
create table Interested-in(

s-username char (50),
topicname char (100),
primary key (s-username, topicname),
foreign key (s-username) references Student (username),
foreign key (topicname) references Topic (topicname)

)
engine=InnoDB;

Discount
Relational Model: Discount (discountno, newprice, startdate, finishdate, situation, cno,
admin-username)
Candidate Key:

discountno
Primary Key: discountno
Foreign Key:

cno referencing Course
admin-username referencing SiteAdmin (username)

Table Definition:
create table Discount(

discountno int,
newprice numeric(6,2),
startdate Date,
finishdate Date,
situation smallint,
cno int,
admin-username char(50),

12

primary key (discountno),
foreign key (cno) references Course (cno),
foreign key (admin-username) references SiteAdmin (username)

)
engine=InnoDB;

Post
Relational Model: Post (postno, lecture-no, post, username)
Candidate Key:

postno
Primary Key: postno
Table Definition:
create table Post (

postno int,
lecture-no int,
post char(200),
username char(50),
primary key (postno),
foreign key (username) references User (username),
foreign key (lecture-no) references Lecture (lecture-no)

)
engine=InnoDB;

Quest-answ
Relational Model: Quest-answ (answer-no, question-no)
Candidate Key:

answer-no
Primary Key: answer-no
Foreign Key:

answer-no referencing Post (postno)
question-no referencing Post (postno)

Table Definition:
create table Quest-answ (

answer-no int,
question-no int,
primary key (answer-no),
foreign key (answer-no) references Post (postno),
foreign key (question-no) references Post (postno)

)
engine=InnoDB;

Advertisement
Relational Model: Advertisement (advertisementno, ad-username, cno, advertisement, status,
payment, startdate, finishdate)
Candidate Key:

advertisementno

13

Primary Key: advertisementno
Foreign Key:

ad-username referencing Advertiser (username)
cno referencing Course

Table Definition:
create table Advertisement (

advertisementno int,
ad-username char (50),
cno int,
advertisement varchar(512),
status smallint,
payment numeric(20,2),
startdate Date,
finishdate Date,
primary key (advertisementno),
foreign key (ad-username) references Advertiser (username),
foreign key (cno) references Course (cno)

)
engine=InnoDB;

RefundRequest
Relational Model: RefundRequest (refund-id, s-username, cno, reason, status)
Candidate Key:

refund-id
Primary Key: refund-id, s-username, cno
Foreign Key:

s-username referencing Student (username)
cno referencing Course

Table Definition:
create table RefundRequest (

refund-id int,
s-username char (50),
cno int,
reason char (500),
status smallint default 0,
primary key (refund-id),
foreign key (s-username) references Student (username),
foreign key (cno) references Course (cno)

)
engine=InnoDB;

Evaluates
Relational Model: Evaluates (refund-id, admin-username, reply-date)
Candidate Key:

refund-id
Primary Key: refund-id

14

Foreign Key:
admin-username referencing SiteAdmin
refund-id referencing RefundRequest

Table Definition:
create table Evaluates (

refund-id int,
admin-username char(50),
reply-date Date,
primary key (refund-id),
foreign key (admin-username) references SiteAdmin (username),
foreign key (refund-id) references RefundRequest (refund-id)

)
engine=InnoDB;

Assignment
Relational Model: Assignment (assignmentno, assignment, lecture-no)
Candidate Key:

assignmentno
Primary Key: assignmentno
Foreign Key:

lecture-no referencing Lecture
Table Definition:
create table Assignment(

assignmentno int,
assignment longblob,
lecture-no int,
primary key (assignmentno),
foreign key (lecture-no) references Lecture (lecture-no)

)
engine=InnoDB;

LectureMaterial
Relational Model: LectureMaterial (materialno, material, lecture-no)
Candidate Key:

materialno
Primary Key: materialno
Foreign Key: lecture-no referencing Lecture
Table Definition:
create table LectureMaterial (

materialno int,
material longblob,
lecture-no int,
primary key (materialno),
foreign key (lecture-no) references Lecture (lecture-no)

)
engine=InnoDB;

15

Inside-cart
Relational Model: Inside-cart (cno, username, receiver-username)
Candidate Key:

cno, username
Primary Key: cno, username
Foreign Key:

cno referencing Course
cart-id referencing Cart
receiver-username referencing Student (username)

Table Definition:
create table Inside-cart (

cno int,
username char (50),
receiver-username char (50),
primary key (cno, username),
foreign key (cno) references Course (cno),
foreign key (username) references User (username),
foreign key (receiver-username) references Student (username)

)
engine=InnoDB;

III. Interface Designs and Corresponding SQL Statements
As some of the mockups were not obligatory and, in our report, is there mostly for reference
purposes, we did not write the queries for those. All the other necessitated designs are placed
alongside their queries.

16

Main Page Before Login (Scroll Down)

17

SQL Statement:
● Used to demonstrate the highest ranked courses.

select c.cno, c.cname
from Course as c
natural join (

select r.cno
from Rate as r
group by r.cno
order by avg(r.score)) as t

limit 4;

● Used to demonstrate the most popular courses.
select c.cno, c.cname
from Course as c
natural join (

select e.cno
from Enroll as e
group by e.cno
order by count(e.s-username)) as t

limit 4;

Student Signup Page

SQL Statement:
insert into User values (“mayazsy”, “Maya”, “123456”, “mayaozsoy@gmail.com”, “05555555555”);
insert into Student (“mayazsy”);

18

Instructor Signup

SQL Statement:
insert into User values (“dbetulcift”, “Defne Betul”, “Db1234”, “defne@gmail.com”, “05396624299”);
insert into Instructor values (“dbetulcift”, “Hi, I am Defne and my passion is web development. I have
been teaching it for 15 years.”);

Advertiser Signup

SQL Statement:
insert into Advertiser values (“isikozsoy”, “Isik”, “mm19kk”, “isikozsoy@bilkent.com”, “05459554545”,

“Bilkent Holding”);

19

Login Page for Advertiser

SQL Statement:
select password
from Advertiser
where ad-username =”isikozsoy”;

Login Page for Other User Types

SQL Statement:
select password
from User
where username =”mayazsy”;

20

Main Page of Student After Login (Scroll Down)

SQL Statement:
● Used to demonstrate the courses that are not finished yet.

select cno, cname, course-img
from Enroll
where s-username=”mayazsy” and cno not in (

select cno
from Finishes
where s-username=”mayazsy”);

● Used to demonstrate all the courses of the student.
select cno, cname, course-img
from Enroll
where s-username=”mayazsy”;

21

● Categories show all the topics in the platform. At the top of the page, the topics
“Programming”, “Database” and “Python” are selected.

SQL Statement:
select distinct topicname
from Topic;

● When the student scroll downs the page, s/he sees the courses, which belong to the selected
topics, separately.

SQL Statement:
with specified-courses (cno) as

(select cno
from Course-topic
where topicname = "Programming")

select cno, cname, course-img
from (select cno, sum (score) as tot-rate

from specified-courses natural join Rate
group by cno) natural join Course;

with specified-courses (cno) as
(select cno
from Course-topic
where topicname = "Database")

select cno, cname, course-img
from (select cno, sum (score) as tot-rate

from specified-courses natural join Rate
group by cno) natural join Course;

with specified-courses (cno) as
(select cno

22

from Course-topic
where topicname = "Python")

select cno, cname, course-img
from (select cno, sum (score) as tot-rate

from specified-courses natural join Rate
group by cno) natural join Course;

Main Page of Instructor After Login

SQL Statement:
select cno, cname, course-img
from Course
where owner-username = "dbetulcift";

select cno, cname
from Course natural join Contributor
where i-username = "dbetulcift";

23

Course Info Page

SQL Statement:
● Assume that the cno of the course named Build an education app is 1.

select cname, owner-username, price, description, name
from Course, User
when cno = 1;

select i-username, name
from Contributor, User
where cno = 1 and i-username = ‘mayazsy’;

24

--To demonstrate the comments made by the student who has finished the course.
select comment
from Finishes
where cno=15;

select cno, avg(score) as avg-rate
from Rate
where cno = 1;

● If the student adds the item to the cart, the following query will be used (assume that the
course no is 9). Null represents the username of the student that will receive the course as a
gift.

insert into Inside-cart values (9, ‘mayaozsy’, null);

select advertisementno, advertisement
from Advertisement
where cno = 1 and curdate() between startdate and finishdate and status = 1;

● If the student adds the course into wishlist by clicking on the heart icon;
insert into Wishes values (‘mayazsy’, 9);

Shopping Cart Page and with Gift Property Page

25

SQL Statement:
● When the student enters the shopping cart page,

select cno, cname, price, receiver-email
from Course as C, Inside-cart as I
where C.cno = I.cno and I.username = “mayazsy”;

select cno, avg(score)
from Rate
where cno in (select cno

from In-cart as I
where I.username = “mayazsy”)

group by cno;

● In the mockups above, the user selected the gift option for the first course in the cart, then
provided the username of the receiver. Assume that the cno of the first course is 5 and the
second course is 15.

update Inside-cart
set recevier-username = ‘melikeee’
where cno = 9 and username = ‘mayazsy’;

● Considering the second page, if the student buys the courses;
--for the course that is a gift
insert into Gift (‘mayazsy’, ‘melikeee’, 9);
insert into Enroll (‘melikeee’, 9);

--for the course that is not a gift
insert into Enroll values(“mayazsy”, 15);

● If the student selects remove option for the second course;

26

delete from Inside-cart
wherecno = 15 and username = ‘mayazsy’;

Notifications

SQL Statement:
-- for listing the announcements of enrolled courses

select ann-tex, cname, ann-id, ann-date, owner-username
from Course, Announce, Enroll
where Enroll.s-username = “mayazsy” and Enroll.cno = Course.cno and Announce.cno =
Course.cno;

-- for the list of received gifts
select g.sender-username, c.cname
from Gift as g, Course as c
where g.cno = c.cno;

27

Student’s Courses Page

SQL Statement:
select cno, cname, course-img
from Course, Enroll
where Course.cno = Enroll.cno and Enroll.s-username = “mayazsy”;

select cno,avg(score)
from Rate
where cno in (select cno

from Enroll as E
where E.s-username = “mayazsy”)

group by cno;

● The red lines behind the course images demonstrate the general progress for the course. In
order to find the progress rate, the number of the completed lectures will be divided into the
total number of the lectures of the given course. Assume that the cno of Python Introductory
course is 5.

--The number of lectures of the Python Introductory course is found.
select count (lecture-no) as tot-lec-count
from Lecture
where cno = 5;

-- The number of completed lectures of the Python Introductory course is found.
select count (lecture-no) as comp-lec-count
from Lecture as L, Progress as P
where L.cno = 5 and L.cno = P.cno and username=’mayazsy’;

28

Wishlist Page

SQL Statement:
-- listing the courses inside the wishlist
select cno, cname, course-img
from Course, Wishes
where Wishes.cno = Course.cno and Wishes.s-username = “mayazsy”;

● If the student adds the course called The Tempest by Shekspare to cart (Assume that the cno
is 22);

insert into Inside-cart values (22, ‘mayazsy’, null);

29

Watching Lecture Page

SQL Statement:
● It was assumed that the cno of Build an education app is 15 and the lecture no of the current

lecture (Design Report) is 1432.

select lecture-no, lecture-name, video
from Lecture as L
where L.cno = 15;

● When the lecture is opened, it is added into the Progress table and considered as completed.
insert into Progress (“mayazsy”, 1432);

Course Overview Page

30

SQL Statement:
-- list course contents
select cno, description, including, owner-username
from Course
where cno = 15;

Completing a Course Page

SQL Statement:
● Assume that the cno of the Build an education app is 15

select count(lecture-no) as finished-lec-cnt
from Progress natural join Lecture
where s-username = “mayazsy” and cno = 15;

select count(lecture-no) as lecture-cnt
from Lecture
where cno = 15;

● If finished-lec-cnt == lecture-cnt;
insert into Finishes values (“mayazsy”, lecture-no, “I learned a lot in this course!”);

select cno, cname, s-username, comment
from Finishes natural join Course
where s-username = “mayazsy” and cno = 15;

31

● A mockup of the certificate pdf template can be seen above.

Course Refund Request

SQL Statement:
● The student requested a refund for the course called Build and education app (cno: 15)

32

insert into RefundRequest values (512, “mayazsy”, 15, ‘The description of the course is misleading
and the course content does not offer what it promises’, 0);
--it automatically enters to the database as 0, meaning not evaluated yet

● If an admin whose username is marythead selects and evaluates the request as approved;
insert into Evaluates values (512, ‘marythead’, ‘02/04/2020’);

update RefundRequest
set status = 1
where refund-id = 512;

● If an admin whose username is marythead selects and evaluates the request as rejected;

select 'marythead', refund_id, curdate()
from RefundRequest
where status = -1;

Course Ask Question

SQL Statement:
-- 1028 is the id of the post, while 15 is the id of the course the post is inside of
-- inserts the comment seen above as a discussion post to the forum of the course

33

insert into Post values (1028, 15, ‘Can I only include the attributes of “group by” at the “select” or the
attribute inside the aggregate function could be an attribute of a table other than “group by” results?’,
“mayazsy”);

Note Page

SQL Statement:
● A student can take a note for the current lecture.

insert into Takes-note (“mayazsy”, 14321, “Do not forget to revise this lecture”);
insert into Takes-note (“mayazsy”, 10283, “After 4:17, the topics are not included in the
recommended textbooks.”);

Course Page for Advertisers - Additional Functionality

34

-- list course contents (assume that cno is 15)
select cno, description, including, owner-username
from Course
where cno = 15;

Advertise Page for Advertisers - Additional Functionality

SQL Statement:
--status = 0 means it is not reviewed yet

insert into Advertisement (836, “isikozsoy”, 1, “ad-836-img.php”, 0, 339.99, ‘2021-04-21’,
‘2021-04-30’);

35

Notification Page for Instructors that Shows the Advertisement Offer - Additional
Functionality

SQL Statement:
select advertisementno, advertisement, company-name, cno
from Advertisement natural joins Advertiser, Course
where Advertisement.cno = Course.cno and Course.owner-username = “mayazsy”;

select cno, cname, i-username, name
from Contributor natural join Course, User
where Course.owner-username = “mayazsy” and User.username = name;

36

Advertisement Requests for Advertisers - Additional Functionality

SQL Statement:
select advertisementname, startdate, finishdate, price, status
from Advertisement
where ad-username = ‘isikozsoy’; --isikozsoy is an Advertiser

Extra Pages Made for Instructor Which Are Unnecessary for Design Report

37

38

Add Lecture Material Page

SQL Statement:
--1432 is the number of the lecture Indexing in the Build an education app and an additional material
is added to that lecture.
insert into LectureMaterial values (100321, “100321.php” ,1432);

39

IV. Systems and Technologies
We have decided to use JavaScript, HTML, and PHP for website design and functionalities and
MySQL for the database management system.

40

